
CSE 451: Operating Systems
Spring 2020

Module 6.5
Something of a Midterm Review

John Zahorjan

1

Modules

1. Course Introduction
2. Architectural Support for Operating Systems
3. Operating System Components and Structure
4. Processes
5. Threads
6. Synchronization

Labs
• Lab 1
• Lab 2

1. Course Introduction
• What is an OS?
• What does it do?

• Library-like shared functionality
• Allocates hardware resources
• Protection, while allowing apps to exeute directly on hardware when it’s safe

to do so

• OS abstraction of hardware
• processes (virtual address spaces)
• files
• sockets
• streams

• OS provides a measure of portability

1. Course Introduction
• Policy / Mechanism separation
• OS and concurrency

• Why?
• Why run more than one application concurrently?
• Why does execution of the OS itself involve concurreny?

• Concurrency vs. Parallelism

2. Architectural Support for Operating Systems

• Why does OS “require” hardware support?
• Hardware support:

• CPU modes (privileged vs. unprivileged)
• Privileged instructions

• OS runs first, at boot
• OS established safe execution context for user-level process before

dispatching it
• Establishes memory mapping to limit memory access
• Establishes CPU mode to prevent execution of privileged instructions

• Changing execution context is privileged

• Protection violation
• Hardware exception: mechanism
• OS handler: policy

2. Architectural Support for Operating Systems

• ONLY way to transition CPU from unprivileged to privileged mode is
the exception mechanism, implemented in hardware

• Exception mechanism always branches to a location stored in a
privileged register

• A user program turn on privilege, for example when it wants to make a
system call

• A user program can branch anywhere it wants
• A user program can’t do both together

• Hardware saves some processor state as part of the transition
• What state must be saved by hardware?
• Where does it save it?
• How does it know where to save it?

• “Exception” vs. “interrupt” vs. “trap”

2. Architectural Support for Operating Systems

• The slides show a lot of detail of the x86_64 exception mechanism
• Is it important?

• Not really
• But it’s kind of interesting
• Lessons:

• Need to know what address to transition to
• Need eventually to get to an event-specific handler routine
• Need to establish a kernel stack
• Putting a lot of semantics into the hardware seems like a mistake

• Modern OS’s work around the complicated mechanisms in the x8 architecture

• Mechanism/Policy Dichotomy and Upcalls
• level that detects event does so
• it’s reaction is as generic as possible – invoke code at the level above

2. Architectural Support for Operating Systems

• Protecting Memory
• Virtual Address Space – protection via naming
• Page-level access rights

• Protecting IO devices
• Privileged instructions
• VAS

• Making sure the OS will run again, even if app loops
• Timer

• CPU / IO overlap
• IO completion interrupts

3. Operating System Components and
Structure

• Process concept/component
• basic operations

• Address space concept/component
• virtual memory
• allocation of physical memory

• IO concept/component
• device drivers and integration with OS

• File systems
• as storage abstraction
• as a name space with system-wide scope

• Other components
• protection; text shell; windowing system; networking stack

3. Operating System Components and
Structure

• monolithic structure
• Pro’s
• Con’s

• Purely layered structure
• Pro’s
• Con’s
• HAL layer survives to this day

• Microkernels
• Put major functionality is user-level services, minimize kernel code
• Why?
• Why not?

3. Operating System Components and
Structure

• Support for Virtual Machines
• Exporting hardware interfaces up as the API and running directly on

hardware looking down
• Exporting something close the hardware interfaces up as the API and making

use of a standard OS looking down
• exporting OS interfaces looking up and running on a standard OS looking

down
• Exokernel: exporting abstractions of hardware devices looking up so that all

traditional OS functionality can run inside the user-level process
• mechanism / policy split

• QEMU: binary translation

4. Processes

• Processes as abstractions of hardware
• Processes for isolation

• Unit of failure

• Process = address space + thread + meta-data
• Memory layout: text, data, heap, and stack segments
• Process control blocks and meta-data

• pid as process name

• PCB data structure – allocation
• PCB chaining – can be blocked on at most one thing at a time, so a

single pointer suffices
• not exactly true, but general idea is right

• Process (thread) states: ready/runnable, running, blocked

4. Processes
• Process creation

• fork()
• Why?
• Policy vs. mechanism...

• vs. exec()
• vfork() and COW fork()

• Inheritance of meta-data
• shells and redirection of input/output
• pipes

• Inter-process-communication (IPC)
• command line (invocation) arguments – explicitly passed
• environment variables – implicitly passed
• files
• pipes
• named pipes / named shared memory regions
• internet protocols / sockets

4. Processes

• signals - software exception mechanism
• Why?
• Separation of mechanism and policy

• E.g., a zero-divide occurred. What should happen?

• Aggregates of processes
• Why might you want a level of abtraction above a single process?

• A “job”?

5. Threads
• Threads vs. processes
• Motivation: “granularity”
• Thread (CPU) execution state

• PC (next instruction)
• SP (bottom of this thread’s stack)
• other registers

• Thread state
• running, runnable, blocked

• Threads/processes and scheduling
• it depends
• OS can be oblivious, and just schedule threads equally
• OS can provide some notion of “job” – an aggregate of threads – and try to

treat jobs equally

5. Threads
• A process is created with a single thread

• A copy of the thread that executed fork() in the parent

• An existing thread can create new threads
• thread_ create() vs. process_fork()

• No new address space created/copied, but
unused address space in existing address space found and allocated as stack

• user-level interface allows creator to point to a method where created
thread starts execution

• but that functionality may be implemented in user-level library code that wraps the
actual system call

• Child thread has a new thread id, but other components of process meta-
data are (likely) shared

• who (what code) should decide where new stack is allocated?

5. threads

• kernel threads vs. user threads
• kernel controls allocation of cores to kernel threads

• so you need kernel threads
• “context switching” doesn’t involved anything privileged, though

• so you can build a user-level library that creates abstract execution contexts (threads)
and switches (the core it has) among them

• user-level threads have lower cost operations
• creation/termination, synchronization operations (lock/unlock, join, etc.)
• why?
• why does it matter?

• when a user-level thread blocks, what the kernel blocks is the kernel
thread that was running

• if synchronization variables are implemented at user-level, kernel can’t tell if
thread it just blocked holds one or not

• blocking a thread holding a lock, say, is an unfortunate scheduling choice...

5. threads

• this is a classic policy vs. mechanism confusion issue
• the kernel necessarily implements the core allocation mechanism
• it’s also making the policy decision of which threads should have cores and

which shouldn’t
• the user-level thread package should be making that decision

• Solution approach: scheduler activations
• when kernel adds or removes a core allocation to/from a processs, it does an

“upcall” to allow user-level code to make the scheduling decisions
• which user-level threads should have cores and which shouldn’t

• how must the upcall mechanism work?
• how does the kernel know what code in the app should be run?
• how does it cause that code to be run?

6. Synchronization

• Temporal relationships
• A and B are simultaneous/unordered/concurrent is neither “A is before B”

nor “B is before A” is guaranteed

• What is a critical section?
• How do you recognize that some block of code is a critical section?

• concurrent...
• read-modify-write of...
• variable that is shared

• Eliminating races: mutual exclusion
• Ensure that at most one thread executes the critical section code at a time

6. Synchronization

• Critical section mechanism:
• mutual exclusion
• progress
• bounded waiting
• performance

• Locks
• a mechanism with acquire/release (lock/unlock) interface
• we build more sophisticated mechanisms on top of locks

• Spinlocks
• locks where a thread attempting an acquire() just keeps attempting until it

succeeds

6. Synchronization

• Spinlocks require some hardware assistance
• Need to atomically read and write some shared location

• If read-then-write isn’t atomic, many threads can do the read and all get a
value that indicates the lock is free

• To prevent that, we need to guarantee that if we read the value indicating
free that we overwrite it with a value indicating not-free before another
thread can read it

• Example hardware instructions
• test-and-set(address): atomically return the value read and set the memory

location to 1, no matter what the value was
• compare-and-swap(address, r1, r2): atomically compare the value at the

address with the contents of register 1, and iff they’re equal then write the
contents of register 2 to the address

• See lecture slides for spinlock implementation using test-and-set

6. Synchronization
• Are spin locks a good idea?

• If the lock is normally free, you acquire use of the critical section in just a
couple of instructions

• Releasing the lock is just a write to memory
• On the other hand...

• if lock is busy:
• it could be the lock holder will give it up soon and you’ll get it. Check..
• it could be the lock holder will give it up soon but there are many threads waiting for it.

Not so check.
• it could be the critical section is really long, so you don’t expect the lock to become free

soon. Uncheck.
• it could be the critical section is very short and there aren’t typically a lot of threads

contending for the lock but, by extreme bad luck, the thread holding the lock was
preempted and isn’t even running right now. Very uncheck.

• Rule of thumb
• Use spinlocks only for extremely short code critical section code sequences
• For example, to implement blocking locks

	CSE 451: Operating Systems�Spring 2020��Module 6.5�Something of a Midterm Review
	Modules
	1. Course Introduction
	1. Course Introduction
	2. Architectural Support for Operating Systems
	2. Architectural Support for Operating Systems
	2. Architectural Support for Operating Systems
	2. Architectural Support for Operating Systems
	3. Operating System Components and Structure
	3. Operating System Components and Structure
	3. Operating System Components and Structure
	4. Processes
	4. Processes
	4. Processes
	5. Threads
	5. Threads
	5. threads
	5. threads
	6. Synchronization
	6. Synchronization
	6. Synchronization
	6. Synchronization

